Journal articles
- Pichi, Federico; Moya, Beatriz; Hesthaven, Jan S. A graph convolutional autoencoder approach to model order reduction for parametrized PDEs. JOURNAL OF COMPUTATIONAL PHYSICS. 2024. DOI: 10.1016/j.jcp.2024.112762
- Moya, Beatriz; Badias, Alberto; Gonzalez, David; Chinesta, Francisco; Cueto, Elías. Physics perception in sloshing scenes with guaranteed thermodynamic consistency. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 2023. DOI: 10.1109/TPAMI.2022.3160100
- Moya, Beatriz; Badías, Alberto; González, David; Chinesta, Francisco; Cueto, Elías. A thermodynamics-informed active learning approach to perception and reasoning about fluids. COMPUTATIONAL MECHANICS. 2023. DOI: 10.1007/s00466-023-02279-x
- Moya, Beatriz; Badías, Alberto; González, David; Chinesta, Francisco; Cueto, Elias. Computational Sensing, Understanding, and Reasoning: An Artificial Intelligence Approach to Physics-Informed World Modeling. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING. 2023. DOI: 10.1007/s11831-023-10033-y
- Moya, Beatriz; Badías, Alberto; Alfaro, Icíar; Chinesta, Francisco; Cueto, Elías. Digital twins that learn and correct themselves. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. 2022. DOI: 10.1002/nme.6535
- Moya, Beatriz; Alfaro, Iciar; Gonzalez, David; Chinesta, Francisco; Cueto, Elías. Physically sound, self-learning digital twins for sloshing fluids. PLOS ONE. 2020. DOI: 10.1371/journal.pone.0234569
- Moya, B.; Gonzalez, D.; Alfaro, I.; Chinesta, F.; Cueto, E. Learning slosh dynamics by means of data. COMPUTATIONAL MECHANICS. 2019. DOI: 10.1007/s00466-019-01705-3
Scientific chapters
- Learning physics from data: a thermodynamic interpretation. Chinesta, Francisco; Cueto, Elias; Grmela, Miroslav; Moya, Beatriz; Pavelka, Michal; Sipka, Martin GEOMETRIC STRUCTURES OF STATISTICAL PHYSICS, INFORMATION GEOMETRY, AND LEARNING: SPIGL'20, LES HOUCHES, FRANCE, JULY 27-31. 2021
Projects
- CÁTEDRA ENIA EN INTELIGENCIA ARTIFICIAL Y SOSTENIBILIDAD: DISEÑO, RENDIMIENTO EN OPERACIÓN Y MANTENIMIENTO PREDICTIVO (TSI-100930-2023-1). 01/03/23 - 31/12/26
- T24_23R: Applied Mechanics and Bioengineering (AMB). 01/01/23 - 31/12/25
- T24_20R: Applied Mechanics And Bioengineering (AMB). 01/01/20 - 31/12/22
Contracts
- SIMULATES REALITY: AN INTELLIGENCE AUGMENTATION SYSTEM BASED ON HYBRID TWINS AND AUGMENTED REALITY. 01/01/19 - 31/12/22
Supervision of undergraduate dissertations
- Redes bayesianas informadas por la física aplicadas a sistemas estructurales. Universidad de Zaragoza. Sobresaliente. 17/09/23
- Diseño generativo de estructuras mediante inteligencia artificial guiada por la física. Universidad de Zaragoza. Notable. 13/09/23
- Diseño de estructuras sostenibles mediante cálculo paramétrico y optimización de formas. Universidad de Zaragoza. Notable. 16/12/22
Supervision of master's theses
- Desarrollo de aplicación de estática gráfica para aprendizaje y diseño estructural. Universidad de Zaragoza. Matrícula de honor. 13/09/23
- Modelado físicamente riguroso de tejidos biológicos blandos a partir de datos. Universidad de Zaragoza. Notable. 10/12/21
Participation in conferences
- CMN 2022 Congress on Numerical Methods in Engineering. Participativo - Ponencia oral (comunicación oral). Reinforcement Learning for Physically Sound Fluid Dynamics Correction. Las Palmas de Gran Canaria. 12/09/22
- 15th World Congress on Computational Mechanics & 8th Asian Pacific Congress on Computational Mechanics. Participativo - Ponencia invitada/ Keynote. Thermodynamics-Informed Reinforcement Learning of Fluid Dynamics from Observation. Yokohama. 31/07/22
- 41st MaxEnt2022 Conference. Participativo - Ponencia oral (comunicación oral). Thermodynamics of learning physical phenomena. París. 18/07/22
- 1st IACM Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology Conference (MMLDT-CSET). Participativo - Ponencia oral (comunicación oral). Hybrid twins based on physically sound incremental learning. San Diego. 26/09/21
- VI ECCOMAS YOUNG INVESTIGATORS CONFERENCE (YIC 2021). Organizativo - Otros. Model reduction and artificial intelligence techniques for surrogate and data-assisted models in computational engineering. Valencia. 07/07/21
- Eccomas Young Investigators Conference 2021. Participativo - Ponencia oral (comunicación oral). Deep learning of fluid dynamics from free surface data for full state reconstruction and correction. Valencia. 07/07/21
- Joint European Thermodynamics Conference 2021. Participativo - Ponencia oral (comunicación oral). Thermodynamics-based learning of fluid dynamics from partial information. Praga. 16/06/21
- Coupled problems 2021. Participativo - Ponencia oral (comunicación oral). Physically sound deep learning development of digital twins from partial measurements of real-world data. Chia Laguna. 15/06/21
- World Congress in computational Mechanics 2020. Participativo - Ponencia oral (comunicación oral). Hybrid twins for fluid applications. París. 07/01/21
- C2D3 Virtual Symposium 2020. Participativo - Póster. Digital twins of fluid dynamics for real-time interaction. Cambridge. 09/09/20
- 14th World Congress on Computational Mechanics. Participativo - Ponencia oral (comunicación oral). A NON-INTRUSIVE S-PGD TECHNIQUE FOR SELF-LEARNING DIGITAL TWIN. On-line 19/07/20
- Eccomas Young Investigators Conference 2019. Participativo - Ponencia oral (comunicación oral). Manifold Learning Of Complex Fluid Behavior For Real-Time Simulation. Cracovia. 01/09/19
- Congress on Numerical Methods in Engineering 2019. Participativo - Ponencia oral (comunicación oral). Data-Driven Learning Of Slosh Dynamics. Guimaraes. 01/07/19
- Coupled problems in Engineering 2019. Participativo - Ponencia oral (comunicación oral). Data-Driven, Reduced-Order Modelling And Simulation Of Free-Surface Flows. Sitges. 03/06/19
- dataBest 2019. Participativo - Ponencia oral (comunicación oral). Data-Based Manifold Learning Of Slosh Dynamics. parís. 20/03/19
Research stays
- Escuela Politécnica Federal de Lausana. Lausana. Suiza. 01/09/21 - 28/02/22
Committees
- Comisión de Investigación. Universidad de Zaragoza. 19/03/21 - 16/06/22
- Comisión de doctorado en Ingeniería Mecánica. Universidad de Zaragoza. 20/01/20 - 22/04/22
- Comisión de Calidad del Programa de Doctorado en Ingeniería Mecánica. Universidad de Zaragoza. 20/01/20 - 22/04/22
Other merits
- Proyecto de innovación docente Estática Gráfica. Incorporación de la Estática Gráfica Computacional en los estudios de Arquitectura. 15/06/22
- Organización de sesiones. Organización de simposio en el congreso 6th ECCOMAS Young Investigators
Conference (YIC2021) titulado Model reduction and artificial intelligence techniques for surrogate and
data-assisted models in computational engineering. 16/07/21
|