Profile (CV) of the research teaching staff

Moya Garcia, Beatriz

Group: T24_23R: Applied Mechanics and Bioengineering (AMB)

University degrees
  • Máster en Ingeniería Industrial. Universidad de Zaragoza. 2017
  • Graduado o Graduada en Ingeniería Mecánica. Universidad de Zaragoza. 2015

PhDs
  • Programa Oficial de Doctorado en Ingeniería Mecánica. Universidad de Zaragoza. 2022

Download curriculum in PDF format

 
           

Journal articles

  • Pichi, Federico; Moya, Beatriz; Hesthaven, Jan S. A graph convolutional autoencoder approach to model order reduction for parametrized PDEs. JOURNAL OF COMPUTATIONAL PHYSICS. 2024. DOI: 10.1016/j.jcp.2024.112762

  • Moya, Beatriz; Badias, Alberto; Gonzalez, David; Chinesta, Francisco; Cueto, Elías. Physics perception in sloshing scenes with guaranteed thermodynamic consistency. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 2023. DOI: 10.1109/TPAMI.2022.3160100

  • Moya, Beatriz; Badías, Alberto; González, David; Chinesta, Francisco; Cueto, Elías. A thermodynamics-informed active learning approach to perception and reasoning about fluids. COMPUTATIONAL MECHANICS. 2023. DOI: 10.1007/s00466-023-02279-x

  • Moya, Beatriz; Badías, Alberto; González, David; Chinesta, Francisco; Cueto, Elias. Computational Sensing, Understanding, and Reasoning: An Artificial Intelligence Approach to Physics-Informed World Modeling. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING. 2023. DOI: 10.1007/s11831-023-10033-y

  • Moya, Beatriz; Badías, Alberto; Alfaro, Icíar; Chinesta, Francisco; Cueto, Elías. Digital twins that learn and correct themselves. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. 2022. DOI: 10.1002/nme.6535

  • Moya, Beatriz; Alfaro, Iciar; Gonzalez, David; Chinesta, Francisco; Cueto, Elías. Physically sound, self-learning digital twins for sloshing fluids. PLOS ONE. 2020. DOI: 10.1371/journal.pone.0234569

  • Moya, B.; Gonzalez, D.; Alfaro, I.; Chinesta, F.; Cueto, E. Learning slosh dynamics by means of data. COMPUTATIONAL MECHANICS. 2019. DOI: 10.1007/s00466-019-01705-3

Scientific chapters



© University of Zaragoza | Versión 2.28.0
© Computing and Communications Service of the University of Zaragoza (Pedro Cerbuna 12, 50009 ZARAGOZA - SPAIN)